Close Menu
TechCentralTechCentral

    Subscribe to the newsletter

    Get the best South African technology news and analysis delivered to your e-mail inbox every morning.

    Facebook X (Twitter) YouTube LinkedIn
    WhatsApp Facebook X (Twitter) LinkedIn YouTube
    TechCentralTechCentral
    • News
      Chinese car makers flood South Africa while factories lag - Mikel Mabasa

      Chinese car makers flood South Africa while factories lag

      28 January 2026
      Reports of the smartphone's impending death are greatly exaggerated

      Reports of the smartphone’s impending death are greatly exaggerated

      28 January 2026
      Popia is strong, Paia needs reform, says Information Regulator - Mukelani Dimba

      Popia is strong, Paia needs reform, says Information Regulator

      28 January 2026
      AI replaces people as Amazon cuts 16 000 corporate jobs

      AI replaces people as Amazon cuts 16 000 corporate jobs

      28 January 2026
      iCAUR to launch in South Africa with 20-dealer network - iCAUR V23

      iCAUR to launch in South Africa with 20-dealer network

      28 January 2026
    • World
      SpaceX IPO may be largest in history

      SpaceX IPO may be largest in history

      28 January 2026
      Nvidia throws AI at the weather

      Nvidia throws AI at weather forecasting

      27 January 2026
      Debate erupts over value of in-flight Wi-Fi

      Debate erupts over value of in-flight Wi-Fi

      26 January 2026
      Intel takes another hit - Intel CEO Lip-Bu Tan. Laure Andrillon/Reuters

      Intel takes another hit

      23 January 2026
      ByteDance clinches US TikTok deal

      ByteDance clinches US TikTok deal

      23 January 2026
    • In-depth
      How liberalisation is rewiring South Africa's power sector

      How liberalisation is rewiring South Africa’s power sector

      21 January 2026
      The top-performing South African tech shares of 2025

      The top-performing South African tech shares of 2025

      12 January 2026
      Digital authoritarianism grows as African states normalise internet blackouts

      Digital authoritarianism grows as African states normalise internet blackouts

      19 December 2025
      TechCentral's South African Newsmakers of 2025

      TechCentral’s South African Newsmakers of 2025

      18 December 2025
      Black Friday goes digital in South Africa as online spending surges to record high

      Black Friday goes digital in South Africa as online spending surges to record high

      4 December 2025
    • TCS
      Watts & Wheels S1E2: 'China attacks, BMW digs in, Toyota's sublime supercar'

      Watts & Wheels S1E2: ‘China attacks, BMW digs in, Toyota’s sublime supercar’

      23 January 2026

      TCS+ | Why cybersecurity is becoming a competitive advantage for SA businesses

      20 January 2026
      Watts & Wheels S1E2: 'China attacks, BMW digs in, Toyota's sublime supercar'

      Watts & Wheels: S1E1 – ‘William, Prince of Wheels’

      8 January 2026
      TCS+ | Africa's digital transformation - unlocking AI through cloud and culture - Cliff de Wit Accelera Digital Group

      TCS+ | Cloud without culture won’t deliver AI: Accelera’s Cliff de Wit

      12 December 2025
      TCS+ | How Cloud on Demand helps partners thrive in the AWS ecosystem - Odwa Ndyaluvane and Xenia Rhode

      TCS+ | How Cloud On Demand helps partners thrive in the AWS ecosystem

      4 December 2025
    • Opinion
      Why Elon Musk's Starlink is a 'hard no' for me - Songezo Zibi

      Why Elon Musk’s Starlink is a ‘hard no’ for me

      26 January 2026
      South Africa's new fibre broadband battle - Duncan McLeod

      South Africa’s new fibre broadband battle

      20 January 2026
      AI moves from pilots to production in South African companies - Nazia Pillay SAP

      AI moves from pilots to production in South African companies

      20 January 2026
      South Africa's new fibre broadband battle - Duncan McLeod

      ANC’s attack on Solly Malatsi shows how BEE dogma trumps economic reality

      14 December 2025
      South Africa's new fibre broadband battle - Duncan McLeod

      Netflix, Warner Bros deal raises fresh headaches for MultiChoice

      5 December 2025
    • Company Hubs
      • Africa Data Centres
      • AfriGIS
      • Altron Digital Business
      • Altron Document Solutions
      • Altron Group
      • Arctic Wolf
      • AvertITD
      • Braintree
      • CallMiner
      • CambriLearn
      • CYBER1 Solutions
      • Digicloud Africa
      • Digimune
      • Domains.co.za
      • ESET
      • Euphoria Telecom
      • Incredible Business
      • iONLINE
      • IQbusiness
      • Iris Network Systems
      • LSD Open
      • NEC XON
      • Netstar
      • Network Platforms
      • Next DLP
      • Ovations
      • Paracon
      • Paratus
      • Q-KON
      • SevenC
      • SkyWire
      • Solid8 Technologies
      • Telit Cinterion
      • Tenable
      • Vertiv
      • Videri Digital
      • Vodacom Business
      • Wipro
      • Workday
      • XLink
    • Sections
      • AI and machine learning
      • Banking
      • Broadcasting and Media
      • Cloud services
      • Contact centres and CX
      • Cryptocurrencies
      • Education and skills
      • Electronics and hardware
      • Energy and sustainability
      • Enterprise software
      • Financial services
      • Information security
      • Internet and connectivity
      • Internet of Things
      • Investment
      • IT services
      • Lifestyle
      • Motoring
      • Public sector
      • Retail and e-commerce
      • Satellite communications
      • Science
      • SMEs and start-ups
      • Social media
      • Talent and leadership
      • Telecoms
    • Events
    • Advertise
    TechCentralTechCentral
    Home » Sections » AI and machine learning » How the AI behind ChatGPT actually works

    How the AI behind ChatGPT actually works

    The language models powering modern AI tools have a much longer history than most people realise.
    By The Conversation16 December 2024
    Twitter LinkedIn Facebook WhatsApp Email Telegram Copy Link
    News Alerts
    WhatsApp

    How the AI behind the likes of ChatGPT actually worksThe arrival of AI systems called large language models (LLMs), like OpenAI’s ChatGPT chatbot, has been heralded as the start of a new technological era. And they may indeed have significant impacts on how we live and work in future.

    But they haven’t appeared from nowhere and have a much longer history than most people realise. In fact, most of us have already been using the approaches they are based on for years in our existing technology.

    LLMs are a particular type of language model, which is a mathematical representation of language based on probabilities. If you’ve ever used predictive text on a mobile phone or asked a smart speaker a question, then you have almost certainly already used a language model. But what do they actually do and what does it take to make one?

    Language models are designed to estimate how likely it would be to see a particular sequence of words

    Language models are designed to estimate how likely it would be to see a particular sequence of words. This is where probabilities come in. For example, a good language model for English would assign a high probability to a well=formed sentence like “the old black cat slept soundly” and a low probability to a random sequence of words such as “library a or the quantum some”.

    Most language models can also reverse this process to generate plausible-looking text. The predictive text in your smartphone uses language models to anticipate how you might want to complete text as you are typing.

    The earliest method for creating language models was described in 1951 by Claude Shannon, a researcher working for IBM. His approach was based on sequences of words known as n-grams – say, “old black” or “cat slept soundly”. The probability of n-grams occurring within text was estimated by looking for examples in existing documents. These mathematical probabilities were then combined to calculate the overall probability of longer sequences of words, such as complete sentences.

    Neural networks

    Estimating probabilities for n-grams becomes much more difficult as the n-gram gets longer, so it is much harder to estimate accurate probabilities for 4-grams (sequences of four words) than for bi-grams (sequences of two words). Consequently, early language models of this type were often based on short n-grams.

    However, this meant that they often struggled to represent the connection between words that occurred far apart. This could result in the start and end of a sentence not matching up when the language model was used to generate a sentence.

    Read: iOS 18.2 update is rolling out, adding ChatGPT to iPhones

    To avoid this problem, researchers created language models based on neural networks – AI systems that are modelled on the way the human brain works. These language models are able to represent connections between words that may not be close together. Neural networks rely on large numbers of numerical values (known as parameters) to help understand these connections between words. These parameters must be set correctly for the model to work well.

    The neural network learns the appropriate values for these parameters by looking at large numbers of example documents, in a similar way that n-gram probabilities are learned by n-gram language models. During this “training” process, the neural network looks through the training documents and learns to predict the next word based on the ones that have come before.

    These models work well but have some disadvantages. Although in theory, the neural network is able to represent connections between words that occur far apart, in practice more importance is placed on those that are closer.

    More importantly, words in the training documents have to be processed in sequence to learn appropriate values for the network’s parameters. This limits how quickly the network can be trained.

    The dawn of transformers

    A new type of neural network, called a transformer, was introduced in 2017 and avoided these problems by processing all the words in the input at the same time. This allowed them to be trained in parallel, meaning that the calculations required can be spread across multiple computers to be carried out at the same time.

    A side effect of this change is that it allowed transformers to be trained on vastly more documents than was possible for previous approaches, producing larger language models.

    Transformers also learn from examples of text but can be trained to solve a wider range of problems than only predicting the next word. One is a kind of “fill in the blanks” problem where some words in the training text have been removed. The goal here is to guess which words are missing.

    The use of transformers has allowed the development of modern large language models

    Another problem is where the transformer is given a pair of sentences and asked to decide whether the second should follow the first. Training on problems like these has made transformers more flexible and powerful than previous language models.

    The use of transformers has allowed the development of modern large language models. They are in part referred to as large because they are trained using vastly more text examples than previous models.

    Some of these AI models are trained on over a trillion words. It would take an adult reading at average speed more than 7 600 years to read that much. These models are also based on very large neural networks, some with more than 100 billion parameters.

    In the last few years, an extra component has been added to large language models that allows users to interact with them using prompts. These prompts can be questions or instructions.

    Reinforcement learning

    This has enabled the development of generative AI systems such as ChatGPT, Google’s Gemini and Meta’s Llama. Models learn to respond to the prompts using a process called reinforcement learning, which is similar to the way computers are taught to play games like chess.

    Humans provide the language model with prompts, and the humans’ feedback on the replies produced by the AI model is used by the model’s learning algorithm to guide further output. Generating all these questions and rating the replies requires a lot of human input, which can be expensive to obtain.

    One way of reducing this cost is to create examples using a language model in order to simulate human-AI interaction. This AI-generated feedback is then used to train the system.

    Creating a large language model is still an expensive undertaking, though. The cost of training some recent models has been estimated to run into hundreds of millions of dollars. There is also an environmental cost, with the carbon dioxide emissions associated with creating LLMs estimated to be equivalent to multiple transatlantic flights.

    These are things that we will need to find solutions to amid an AI revolution that, for now, shows no sign of slowing down.The Conversation

    • The author, Mark Stevenson, is senior lecturer, University of Sheffield
    • This article is republished from The Conversation under a Creative Commons licence. Read the original article

    Get breaking news from TechCentral on WhatsApp. Sign up here

    Don’t miss:

    Google rolls out faster Gemini AI model to power agents



    ChatGPT OpenAI
    WhatsApp YouTube Follow on Google News Add as preferred source on Google
    Share. Facebook Twitter LinkedIn WhatsApp Telegram Email Copy Link
    Previous ArticleThe US lost its lead in semiconductors. It may never regain it
    Next Article Broadcom joins the trillion-dollar club

    Related Posts

    Reports of the smartphone's impending death are greatly exaggerated

    Reports of the smartphone’s impending death are greatly exaggerated

    28 January 2026
    Bill Gates, OpenAI team up for AI health push in Africa

    Bill Gates, OpenAI team up for AI health push in Africa

    21 January 2026
    Elon Musk demands billions from OpenAI in explosive lawsuit

    Elon Musk demands billions from OpenAI in explosive lawsuit

    18 January 2026
    Company News
    WeBuyCars expands national footprint with two landmark supermarkets

    WeBuyCars expands national footprint with two landmark supermarkets

    28 January 2026
    The changing state of fintech - from disruption to infrastructure - BBD Software

    The changing state of fintech – from disruption to infrastructure

    27 January 2026
    Human behaviour, not AI will determine who wins in 2026

    Human behaviour, not AI, will determine who wins in 2026

    27 January 2026
    Opinion
    Why Elon Musk's Starlink is a 'hard no' for me - Songezo Zibi

    Why Elon Musk’s Starlink is a ‘hard no’ for me

    26 January 2026
    South Africa's new fibre broadband battle - Duncan McLeod

    South Africa’s new fibre broadband battle

    20 January 2026
    AI moves from pilots to production in South African companies - Nazia Pillay SAP

    AI moves from pilots to production in South African companies

    20 January 2026

    Subscribe to Updates

    Get the best South African technology news and analysis delivered to your e-mail inbox every morning.

    Latest Posts
    Chinese car makers flood South Africa while factories lag - Mikel Mabasa

    Chinese car makers flood South Africa while factories lag

    28 January 2026
    Reports of the smartphone's impending death are greatly exaggerated

    Reports of the smartphone’s impending death are greatly exaggerated

    28 January 2026
    Popia is strong, Paia needs reform, says Information Regulator - Mukelani Dimba

    Popia is strong, Paia needs reform, says Information Regulator

    28 January 2026
    AI replaces people as Amazon cuts 16 000 corporate jobs

    AI replaces people as Amazon cuts 16 000 corporate jobs

    28 January 2026
    © 2009 - 2026 NewsCentral Media
    • Cookie policy (ZA)
    • TechCentral – privacy and Popia

    Type above and press Enter to search. Press Esc to cancel.

    Manage consent

    TechCentral uses cookies to enhance its offerings. Consenting to these technologies allows us to serve you better. Not consenting or withdrawing consent may adversely affect certain features and functions of the website.

    Functional Always active
    The technical storage or access is strictly necessary for the legitimate purpose of enabling the use of a specific service explicitly requested by the subscriber or user, or for the sole purpose of carrying out the transmission of a communication over an electronic communications network.
    Preferences
    The technical storage or access is necessary for the legitimate purpose of storing preferences that are not requested by the subscriber or user.
    Statistics
    The technical storage or access that is used exclusively for statistical purposes. The technical storage or access that is used exclusively for anonymous statistical purposes. Without a subpoena, voluntary compliance on the part of your Internet Service Provider, or additional records from a third party, information stored or retrieved for this purpose alone cannot usually be used to identify you.
    Marketing
    The technical storage or access is required to create user profiles to send advertising, or to track the user on a website or across several websites for similar marketing purposes.
    • Manage options
    • Manage services
    • Manage {vendor_count} vendors
    • Read more about these purposes
    View preferences
    • {title}
    • {title}
    • {title}