Close Menu
TechCentralTechCentral

    Subscribe to the newsletter

    Get the best South African technology news and analysis delivered to your e-mail inbox every morning.

    Facebook X (Twitter) YouTube LinkedIn
    WhatsApp Facebook X (Twitter) LinkedIn YouTube
    TechCentralTechCentral
    • News

      World Bank set to back South Africa’s big energy grid roll-out

      20 June 2025

      The algorithm will sing now: why musicians should be worried about AI

      20 June 2025

      Sita hits back at critics, promises faster, automated procurement

      20 June 2025

      The transatlantic race to create the first television

      20 June 2025

      Listed: All the MVNOs in South Africa – 2025 edition

      19 June 2025
    • World

      Watch | Starship rocket explodes in setback to Musk’s Mars mission

      19 June 2025

      Trump Mobile dials into politics, profit and patriarchy

      17 June 2025

      Samsung plots health data hub to link users and doctors in real time

      17 June 2025

      Beijing’s chip champions blacklisted by Taiwan

      16 June 2025

      China is behind in AI chips – but for how much longer?

      13 June 2025
    • In-depth

      Meta bets $72-billion on AI – and investors love it

      17 June 2025

      MultiChoice may unbundle SuperSport from DStv

      12 June 2025

      Grok promised bias-free chat. Then came the edits

      2 June 2025

      Digital fortress: We go inside JB5, Teraco’s giant new AI-ready data centre

      30 May 2025

      Sam Altman and Jony Ive’s big bet to out-Apple Apple

      22 May 2025
    • TCS

      TCS+ | AfriGIS’s Helen Hulett on how tech can help resolve South Africa’s water crisis

      18 June 2025

      TechCentral Nexus S0E2: South Africa’s digital battlefield

      16 June 2025

      TechCentral Nexus S0E1: Starlink, BEE and a new leader at Vodacom

      8 June 2025

      TCS+ | The future of mobile money, with MTN’s Kagiso Mothibi

      6 June 2025

      TCS+ | AI is more than hype: Workday execs unpack real human impact

      4 June 2025
    • Opinion

      South Africa pioneered drone laws a decade ago – now it must catch up

      17 June 2025

      AI and the future of ICT distribution

      16 June 2025

      Singapore soared – why can’t we? Lessons South Africa refuses to learn

      13 June 2025

      Beyond the box: why IT distribution depends on real partnerships

      2 June 2025

      South Africa’s next crisis? Being offline in an AI-driven world

      2 June 2025
    • Company Hubs
      • Africa Data Centres
      • AfriGIS
      • Altron Digital Business
      • Altron Document Solutions
      • Altron Group
      • Arctic Wolf
      • AvertITD
      • Braintree
      • CallMiner
      • CYBER1 Solutions
      • Digicloud Africa
      • Digimune
      • Domains.co.za
      • ESET
      • Euphoria Telecom
      • Incredible Business
      • iONLINE
      • Iris Network Systems
      • LSD Open
      • NEC XON
      • Network Platforms
      • Next DLP
      • Ovations
      • Paracon
      • Paratus
      • Q-KON
      • SevenC
      • SkyWire
      • Solid8 Technologies
      • Telit Cinterion
      • Tenable
      • Vertiv
      • Videri Digital
      • Wipro
      • Workday
    • Sections
      • AI and machine learning
      • Banking
      • Broadcasting and Media
      • Cloud services
      • Contact centres and CX
      • Cryptocurrencies
      • Education and skills
      • Electronics and hardware
      • Energy and sustainability
      • Enterprise software
      • Fintech
      • Information security
      • Internet and connectivity
      • Internet of Things
      • Investment
      • IT services
      • Lifestyle
      • Motoring
      • Public sector
      • Retail and e-commerce
      • Science
      • SMEs and start-ups
      • Social media
      • Talent and leadership
      • Telecoms
    • Events
    • Advertise
    TechCentralTechCentral
    Home » In-depth » The chemistry behind your flat-screen TV: how a scientist changed the world

    The chemistry behind your flat-screen TV: how a scientist changed the world

    By The Conversation25 February 2022
    Twitter LinkedIn Facebook WhatsApp Email Telegram Copy Link
    News Alerts
    WhatsApp

    In a laboratory at the University of Hull 50 years ago, a new chemical compound was created that would impact the world as much as any drug, fuel or material. The man responsible for this society-changing invention was George Gray – his new liquid crystal molecules (now known as 5CB) made liquid crystal displays (LCDs) viable and kick-started the multibillion-dollar flat-screen industry.

    The story begins back in 1967 when John Stonehouse, a Labour MP and minster for technology under Prime Minister Harold Wilson, established a group to develop a technology that had only just made its debut on Star Trek – a full colour flat-screen display.

    Unfortunately for Stonehouse, his amazing foresight has since been overshadowed by his attempt (in 1974) to fake his own death to avoid punishment for multiple counts of fraud and forgery.

    Gray’s new liquid crystal molecules kick-started the multibillion-dollar flat-screen industry

    But before we get back to the colourful characters involved, let’s take a look at the science of LCDs.

    Liquid crystals are a state of matter that sits between liquids and solids. They flow like a liquid, while the molecules within them maintain some order relative to each other, like in a crystal. The long and thin molecules pack against one another in an ordered rectangular arrangement of rows.

    Crucially, these liquid crystal structures can interact with light in interesting ways, and this is key to how they work within flat-screen displays. Each pixel within an LCD is comprised of a light source, usually a light-emitting diode (LED), and a thin layer of liquid crystals sandwiched between two filters that scientists describe as polarising.

    The light emanating from a bulb, LED or the sun is known as unpolarised, in the sense that it consists of waves travelling outwards in a variety of orientations. By analogy, imagine a group of schoolchildren all waving skipping ropes. Some will wave their ropes up and down and some side to side, and some at angles in between.

    Polarising filters

    Polarising filters bring order to emanating light waves by only allowing waves with a particular orientation to pass. As well as in LCDs, you find them in some sunglasses, for example. If we return to our rope analogy, imagine the ropes are fed through a slatted gate. The parallel slats of the gate only allow the waves travelling up and down to propagate, while the waves from all the children shaking their ropes in other directions are restricted – that’s what polarisation does with light.

    Now imagine you have two polarising filters. You place one on top of the other and hold them up to the light. As expected, they cut out some of the light getting to your eye. Now, while keeping one in front of the other, you twist a filter by 90 degrees. It turns out that something odd happens – they now cut out all the light and together the filters appear opaque. In this orientation, the first filter is cutting out the “side-to-side” polarised light, while the second filter cuts out “up and down” light.

    At the heart of LCDs are two polarising filters in this orientation.

    The thin layer of liquid crystals between these polarising filters does something rather clever. The molecules stack in the shape of a helix that twists the polarisation of the light, letting it slip through the second filter.

    There’s one more thing needed to turn this sandwich of polarising filters and liquid crystals into a pixel within a display. You need some means to switch the liquid crystal’s light-twisting properties on and off. That way you can control whether a pixel is bright or dark.

    And, this is where we return to Stonehouse – because back in 1967 he got the ball rolling to crack that problem. In his role at the ministry of technology, Stonehouse soon learnt that the UK was paying the Americans more for the rights to use their colour cathode ray tube technology (in those big bulky televisions and monitors) in displays used by the military than it was spending on developing the supersonic airliner, Concorde.

    This convinced him that the UK needed to develop a colour flat-screen panel. A government working group, led by the physicist Cyril Hilsum, met with experts in their respective fields to decide which technologies should receive funding. When it came to the meeting on liquid crystals, the expert was asked why the light was reflecting off his sample bottle of liquid crystals and casting such a curious pattern on the wall. He couldn’t answer – but a young George Gray, a chemistry lecturer from the University of Hull, could. And that moment of brilliance won him the contract.

    Within a year, Gray’s research team had developed a liquid crystal that was stable, easy to manufacture and, most importantly, included a positive charge at one end. The charge meant that an electric field could be applied to a pixel, pulling on the charged molecule to break up the structure of the liquid crystals and turn the pixel dark. Removing the power allowed the stack to reform and the pixel to flip back to white.

    Watches, TVs

    The molecule is known as 4-Cyano-4’-pentylbiphenyl, or 5CB for short. And by 1974 the first devices containing this compound were on sale, such as calculators and digital watches. Even to this day, if you own a watch with a grey and black display you’ve got some 5CB on your wrist.

    Colour screens came a bit later. They work on exactly the same principle, except each pixel is made from three tiny subpixels, with red, green and blue filters added to the layers, each of which can be controlled individually to generate the millions of hues we expect in our modern high-resolution screens.

    The first colour flat-screen TVs hit the market in 1988 when the Sharp Corporation launched its 14-inch LCD TV. Unfortunately Stonehouse missed seeing his vision come to fruition as he had died earlier that year.The Conversation

    • Written by Mark Lorch, professor of science communication and chemistry, University of Hull
    • This article is republished from The Conversation under a Creative Commons licence


    George Gray John Stonehouse Mark Lorch Sharp
    Subscribe to TechCentral Subscribe to TechCentral
    Share. Facebook Twitter LinkedIn WhatsApp Telegram Email Copy Link
    Previous ArticleCell C prepaid broadband deals rejigged – R45 for 4GB
    Next Article Poland comes under cyberattack

    Related Posts

    Sharp launches Windows collaboration display

    12 June 2020

    Sharp to buy Toshiba’s PC business

    5 June 2018

    Nintendo, still games master at 125

    26 September 2014
    Company News

    Making IT happen: how Trade Link gears up to enable SA retail strategies

    20 June 2025

    Why parents choose CambriLearn for online education

    19 June 2025

    Disrupt first, ask questions later – the uncomfortable truth about incident response

    18 June 2025
    Opinion

    South Africa pioneered drone laws a decade ago – now it must catch up

    17 June 2025

    AI and the future of ICT distribution

    16 June 2025

    Singapore soared – why can’t we? Lessons South Africa refuses to learn

    13 June 2025

    Subscribe to Updates

    Get the best South African technology news and analysis delivered to your e-mail inbox every morning.

    © 2009 - 2025 NewsCentral Media

    Type above and press Enter to search. Press Esc to cancel.