TechCentralTechCentral
    Facebook Twitter YouTube LinkedIn
    Facebook Twitter LinkedIn YouTube
    TechCentral TechCentral
    NEWSLETTER
    • News

      Saboteurs threaten South Africa’s power supply

      20 May 2022

      Prosus to sell Russia’s Avito

      20 May 2022

      Curro pilots artificial intelligence for learning in its schools

      20 May 2022

      Dark weekend lies ahead thanks to you know who

      20 May 2022

      CSIR develops app to help kids learn to read

      20 May 2022
    • World

      Chip giant ASML places big bets on a tiny future

      20 May 2022

      Musk moves to soothe investor fears over Tesla

      20 May 2022

      Apple is almost ready to show off its mixed-reality headset

      20 May 2022

      TikTok plans big push into gaming

      19 May 2022

      Musk says he will vote Republican, calls ESG a ‘scam’

      19 May 2022
    • In-depth

      Elon Musk is becoming like Henry Ford – and that’s not a good thing

      17 May 2022

      Stablecoins wend wobbly way into the unknown

      17 May 2022

      The standard model of particle physics may be broken

      11 May 2022

      Meet Jared Birchall, Elon Musk’s personal ‘fixer’

      6 May 2022

      Twitter takeover was brash and fast, with Musk calling the shots

      26 April 2022
    • Podcasts

      Dean Broadley on why product design at Yoco is an evolving art

      18 May 2022

      Everything PC S01E02 – ‘AMD: Ryzen from the dead – part 2’

      17 May 2022

      Everything PC S01E01 – ‘AMD: Ryzen from the dead – part 1’

      10 May 2022

      Llew Claasen on how exchange controls are harming SA tech start-ups

      2 May 2022

      The inside scoop on OVEX’s big expansion plans

      20 April 2022
    • Opinion

      A proposed solution to crypto’s stablecoin problem

      19 May 2022

      From spectrum to roads, why fixing SA’s problems is an uphill battle

      19 April 2022

      How AI is being deployed in the fight against cybercriminals

      8 April 2022

      Cash is still king … but not for much longer

      31 March 2022

      Icasa on the role of TV white spaces and dynamic spectrum access

      31 March 2022
    • Company Hubs
      • 1-grid
      • Altron Document Solutions
      • Amplitude
      • Atvance Intellect
      • Axiz
      • BOATech
      • CallMiner
      • Digital Generation
      • E4
      • ESET
      • Euphoria Telecom
      • IBM
      • Kyocera Document Solutions
      • Microsoft
      • Nutanix
      • One Trust
      • Pinnacle
      • Skybox Security
      • SkyWire
      • Tarsus on Demand
      • Videri Digital
      • Zendesk
    • Sections
      • Banking
      • Broadcasting and Media
      • Cloud computing
      • Consumer electronics
      • Cryptocurrencies
      • Education and skills
      • Energy
      • Fintech
      • Information security
      • Internet and connectivity
      • Internet of Things
      • Investment
      • IT services
      • Motoring and transport
      • Public sector
      • Science
      • Social media
      • Talent and leadership
      • Telecoms
    • Advertise
    TechCentralTechCentral
    Home»Top»How Amazon’s delivery drone works

    How Amazon’s delivery drone works

    Top By Editor3 December 2015
    Facebook Twitter LinkedIn WhatsApp Telegram Email

    amazon-prime-air-640

    The unusual look of Amazon’s delivery drone combines elements of both fixed-wing aircraft, such as traditional passenger aeroplanes, and rotocraft such as helicopters, in a design that looks like neither. But despite its unusual looks, the boxy drone has been designed with the requirements of its door-to-door delivery duty in mind.

    Rotocraft can take off and land vertically, which will be an essential requirement if the company is to deliver possibly fragile packages safely and precisely as part of its Amazon Prime Air service. The downside is their lower efficiency and range. As a hybrid of the two, the Amazon drone allows the convenience of vertical take-off and landing, and with its fixed-wing features, the possibility of smooth and quick flight to deliver packages up to around 24km away within 30 minutes.

    The rotary element includes eight propellers organised in four pairs of coaxial rotors — where one is mounted over the other — in a quadcopter layout. These are fitted to two horizontal booms, one to either side of the drone’s central torpedo-like fuselage which carries the packages and the batteries to power it. Coaxial rotors are less efficient than single rotor propellers and they require about 40% more power for the same thrust. But they do provide larger thrust for a given rotor area — a way of packing the most thrust into a small-bodied aircraft.

    The basic principle behind a quadcopter layout is that thrust produced by each of the propellers can be controlled independently to stabilise the attitude of the vehicle. Unlike a helicopter, manual control of a quadcopter is practically impossible. The reason that quadcopters have become so popular — and easy to fly — is only due to the rise of affordable autopilot systems that intelligently monitor and stabilise the drone.

    The fixed-wing aspect of the drone is composed of two wings. The rear wing is a box wing design, incorporating three vertical tail fins, one with a horizontally-mounted propeller. While rarely used, box wings are theoretically more efficient than conventional wings due to the reduction of what is known as vortex-induced drag.

    This drag occurs due to the high-pressure air on the wing’s lower surface escaping around the wing-tips, reducing the effectiveness of the wing. In order to work around this, the box wing design provides a continuous surface that blocks the movement of air from lower to upper surface. Winglets on conventional aircraft are designed to play a similar role.

    The box wing also has some structural advantages, but in practice there are aerodynamic trade-offs which mean it is normally discarded in favour of large wing spans. In Amazon’s case, the box wing design provides the necessary lift in an aircraft that’s also small — so that it’s easier to land in your garden.

    The front wing also features winglet-like fins to reduce drag, only these are inverted to point downwards so that they can also double as a place to fit the landing gear, two wheels, in a way that doesn’t create excessive additional drag.

    Conventional fixed-wing aircraft usually have their wings set more or less centrally between the nose and tail, whereas the wings of this drone are positioned at the extreme front and rear, giving the aircraft its curious square appearance.

    For an aircraft to be stable and safe to fly, the centre of mass must be positioned in front of the centre of lift. On a conventional aircraft, the centre of lift is roughly aligned with the main wings and the aircraft’s weight is nearer the nose. The centre of mass for Amazon’s drone will probably be close to the centre of the aircraft to ensure it is balanced when operating in vertical flight. The use of a larger wing area at the rear will help to bring the centre of lift backwards, behind the centre of mass, to ensure it remains stable in forward flight.

    For its control surfaces, the drone has elevons — a combination of ailerons (which control aircraft roll) and elevators (which control pitch). When synchronised, they can be used to control the aircraft’s angle of pitch up or down, and when moved in opposite directions, they control the roll of the aircraft. This design is another decision that potentially reduces mass, cost and complexity, although potentially at the cost of control.

    The aircraft is one of several prototypes being evaluated by Amazon, and shows some interesting concepts. Inevitably, there’s a difficult compromise to be struck between the need for vertical take-off and landing and forward flight efficiency. The wings and control surfaces add extra weight, reducing flight time, while the rotors, their motors, and the extra structural elements they require will add more weight and drag, reducing its range. It will be interesting to see how Amazon balance these conflicting requirements as their designs progress.The Conversation

    • Pejman Iravani is lecturer in mechanical engineering, David Cleaver is lecturer in aerospace engineering and Jonathan du Bois is lecturer in electromechanical engineering, all at the University of Bath
    • This article was originally published on The Conversation
    Amazon Amazon Prime Air Amazon.com David Cleaver Jonathan du Bois Pejman Iravani
    Share. Facebook Twitter LinkedIn WhatsApp Telegram Email
    Previous ArticleAltron sells Aberdare Cables
    Next Article Autopage sale gets commission nod

    Related Posts

    Chip giant ASML places big bets on a tiny future

    20 May 2022

    Musk moves to soothe investor fears over Tesla

    20 May 2022

    Apple is almost ready to show off its mixed-reality headset

    20 May 2022
    Add A Comment

    Comments are closed.

    Promoted

    Fast-rising fintech Bankingly closes $11m investment round

    20 May 2022

    Creating an effective employer value proposition for the new era of work

    20 May 2022

    Why fibre is the new utility – and what it means for South Africa

    19 May 2022
    Opinion

    A proposed solution to crypto’s stablecoin problem

    19 May 2022

    From spectrum to roads, why fixing SA’s problems is an uphill battle

    19 April 2022

    How AI is being deployed in the fight against cybercriminals

    8 April 2022

    Subscribe to Updates

    Get the best South African technology news and analysis delivered to your e-mail inbox every morning.

    © 2009 - 2022 NewsCentral Media

    Type above and press Enter to search. Press Esc to cancel.