TechCentralTechCentral
    Facebook Twitter YouTube LinkedIn
    Facebook Twitter LinkedIn YouTube
    TechCentral TechCentral
    NEWSLETTER
    • News

      Huge Group to acquire what was Virgin Mobile in South Africa

      6 July 2022

      TechCentral needs your feedback – 2022 reader survey now live

      6 July 2022

      Call for ‘energy emergency’ to end load shedding

      6 July 2022

      What South Africa can learn from India’s IT boom

      6 July 2022

      Where to next for Dimension Data

      5 July 2022
    • World

      China accuses US of ‘technological terrorism’

      6 July 2022

      Apple devices to get ‘Lockdown Mode’ to fight spyware

      6 July 2022

      Scientists at Cern observe three ‘exotic’ new particles

      6 July 2022

      Bitcoin’s first African adopter plans own digital currency

      6 July 2022

      Bitcoin hints at a bottom – but it may be different this time

      5 July 2022
    • In-depth

      The bonfire of the NFTs

      5 July 2022

      The NFT party is over

      30 June 2022

      The great crypto crash: the fallout, and what happens next

      22 June 2022

      Goodbye, Internet Explorer – you really won’t be missed

      19 June 2022

      Oracle’s database dominance threatened by rise of cloud-first rivals

      13 June 2022
    • Podcasts

      Demystifying the complexity of AI – fact vs fiction

      6 July 2022

      How your organisation can triage its information security risk

      22 June 2022

      Everything PC S01E06 – ‘Apple Silicon’

      15 June 2022

      The youth might just save us

      15 June 2022

      Everything PC S01E05 – ‘Nvidia: The Green Goblin’

      8 June 2022
    • Opinion

      South Africa can no longer rely on Eskom alone

      4 July 2022

      Has South Africa’s advertising industry lost its way?

      21 June 2022

      Rob Lith: What Icasa’s spectrum auction means for SA companies

      13 June 2022

      A proposed solution to crypto’s stablecoin problem

      19 May 2022

      From spectrum to roads, why fixing SA’s problems is an uphill battle

      19 April 2022
    • Company Hubs
      • 1-grid
      • Altron Document Solutions
      • Amplitude
      • Atvance Intellect
      • Axiz
      • BOATech
      • CallMiner
      • Digital Generation
      • E4
      • ESET
      • Euphoria Telecom
      • IBM
      • Kyocera Document Solutions
      • Microsoft
      • Nutanix
      • One Trust
      • Pinnacle
      • Skybox Security
      • SkyWire
      • Tarsus on Demand
      • Videri Digital
      • Zendesk
    • Sections
      • Banking
      • Broadcasting and Media
      • Cloud computing
      • Consumer electronics
      • Cryptocurrencies
      • Education and skills
      • Energy
      • Fintech
      • Information security
      • Internet and connectivity
      • Internet of Things
      • Investment
      • IT services
      • Motoring and transport
      • Public sector
      • Science
      • Social media
      • Talent and leadership
      • Telecoms
    • Advertise
    TechCentralTechCentral
    Home»In-depth»Beyond silicon

    Beyond silicon

    In-depth By The Conversation11 March 2016
    Facebook Twitter LinkedIn WhatsApp Telegram Email

    silicon-640

    Our modern world is based on semiconductors. In addition to your computer, cellphones and digital cameras, semiconductors are a critical component of a growing number of devices. Think of the high-efficiency LED lights you are putting in your house, along with everything with a lit display or control circuit: cars, refrigerators, ovens, coffee makers and more. You would be hard-pressed to find a modern device that uses electricity that does not have semiconductor circuits in it.

    While most people have heard of silicon and Silicon Valley, they do not realise that this is just one example of a whole class of materials.

    But the workhorse silicon — used in all manner of computers and electronic gadgets — has its technical limits, particularly as engineers look to use electronic devices for producing or processing light. The search for new semiconductors is on. Where will these materials innovations come from?

    What’s a semiconductor?

    As the name suggests, semiconductors are materials that conduct electricity at some temperatures but not others — unlike most metals, which are conductive at any temperature, and insulators like glass, plastic and stone, which usually don’t conduct electricity.

    However, this is not their most important trait. When constructed properly, these materials can modify the electricity moving through them, including limiting the directions it flows and amplifying a signal.

    The combination of these properties is the basis of diodes and transistors which make up all our modern gadgets. These circuit elements perform a multitude of tasks, including converting the electricity from your wall socket to something usable by the devices, and processing information in the form of zeroes and ones.

    silicon-640

    Light can also be absorbed into semiconductors and turned into electrical current and voltage. The process works in reverse as well, allowing for the emission of light. Using this property, we make lasers, LED lights, digital cameras and many other devices.

    The rise of silicon

    While this all seems very modern, the original discoveries of semiconductors date back to the 1830s. By the 1880s, Alexander Graham Bell experimented with using selenium to transmit sound over a beam of light. Selenium was also used to make some of the first solar cells in the 1880s.

    A key limitation was the inability to purify the elements being used. Tiny impurities — as small as one in a trillion, or 0,0000000001% — could fundamentally change the way a semiconductor behaved. As technology evolved to make purer materials, better semiconductors followed.

    The first semiconducting transistor was made of germanium in 1948, but silicon quickly rose to become the dominant semiconductor material. Silicon is mechanically strong, relatively easy to purify, and has reasonable electrical properties.

    It is also incredibly abundant: 28,2% of the Earth’s crust is silicon. That makes it literally dirt cheap. This almost-perfect semiconductor worked well for making diodes and transistors and still is the basis of almost every computer chip out there. There was one problem: silicon is very inefficient at converting light into an electrical signal, or turning electricity back into light.

    When the primary use of semiconductors was in computer processors connected by metal wires, this wasn’t much of a problem. But, as we moved toward using semiconductors in solar panels, camera sensors and other light-related applications, this weakness of silicon became a real obstacle to progress.

    Finding new semiconductors

    semicon1-640The search for new semiconductors begins on the periodic table of the elements, a portion of which is in the figure at right.

    In the column labelled IV, each element forms bonds by sharing four of its electrons with four neighbours. The strongest of these “group IV” elements bonds is for carbon (C), forming diamonds.

    Diamonds are good insulators (and transparent) because carbon holds on to these electrons so tightly. Generally, a diamond would burn before you could force an electrical current through it.

    The elements at the bottom of the column, tin (Sn) and lead (Pb), are much more metallic. Like most metals, they hold their bonding electrons so loosely that when a small amount of energy is applied the electrons are free to break their bonds and flow through the material.

    Silicon (Si) and germanium (Ge) are in between and accordingly are semiconductors. Due to a quirk in the way both of them are structured, however, they are inefficient at exchanging electricity with light.

    To find materials that work well with light, we have to step to either side of the group IV column. Combining elements from the “group III” and “group V” columns results in materials with semiconducting properties. These “III-V” materials, such as gallium arsenide (GaAs), are used to make lasers, LED lights, photodetectors (as found in cameras) and many other devices. They do what silicon does not do well.

    But why is silicon used for solar panels if it is so bad at converting the light into electricity? Cost. Silicon could be refined from a shovel full of dirt scooped up from anywhere on the Earth’s surface; the III-V compounds’ constituent elements are far rarer.

    A standard silicon solar panel converts the sunlight with an efficiency of 10 to 15%. A III-V panel can be three times as efficient, but often costs more than three times as much. The III-V materials are also more brittle than silicon, making them hard to work with in wide panels.

    However, the III-V materials’ increased electron speeds enable construction of much faster transistors, with speeds hundreds of times faster than the ones you find in your computers. They may pave the way for wires inside computers to be replaced with beams of light, significantly improving the speed of data flow.

    In addition to III-V materials, there are also II-VI materials in use. These materials include some of the sulphides and oxides researched in the 1800s. Combinations of zinc, cadmium and mercury with tellurium have been used to create infrared cameras as well as solar cells from companies such as First Solar. These materials are notoriously brittle and very challenging to fabricate.

    The future of semiconductors

    How might new semiconductor materials be used?

    High power III-V (gallium-nitride) semiconductor electronics will be the backbone of our electrical grid system, converting power for high voltage transmission and back again. New III-V materials (antimonides and bismuthides) are leading the way for infrared sensing for medical, military and other civilian uses, as well new telecommunications possibilities. Earth-abundant element combinations are being explored to make new semiconductors for high-efficiency, but inexpensive, solar cells.

    And what of the old standby, silicon? Its inability to harness light efficiently does not mean that it is destined for the dustbin of history. Researchers are giving new life to silicon, creating “silicon photonics” to better handle light, rather than just shuttling electrons.

    One method is the inclusion of small amounts of another group IV element, tin, into silicon or germanium. That changes their properties, allowing them to absorb and emit light more efficiently.

    The act of including that tin turns out to be difficult, like many other challenges in material science.

    But if it were easy, then it would not be research.The Conversation

    • Thomas Vandervelde is associate professor of electrical and computer engineering, Tufts University
    • This article was originally published on The Conversation
    Share. Facebook Twitter LinkedIn WhatsApp Telegram Email
    Previous ArticleVodacom accused of stealing airtime idea
    Next Article SABC tells DA to back off

    Related Posts

    The bonfire of the NFTs

    5 July 2022

    The NFT party is over

    30 June 2022

    The great crypto crash: the fallout, and what happens next

    22 June 2022
    Add A Comment

    Comments are closed.

    Promoted

    Hot Ink certifies and diversifies to maintain competitive printing edge

    5 July 2022

    Increased flexibility with Dell Precision Mobile Workstations

    5 July 2022

    The 5 secrets of customer experience in the cloud era

    5 July 2022
    Opinion

    South Africa can no longer rely on Eskom alone

    4 July 2022

    Has South Africa’s advertising industry lost its way?

    21 June 2022

    Rob Lith: What Icasa’s spectrum auction means for SA companies

    13 June 2022

    Subscribe to Updates

    Get the best South African technology news and analysis delivered to your e-mail inbox every morning.

    © 2009 - 2022 NewsCentral Media

    Type above and press Enter to search. Press Esc to cancel.