Close Menu
TechCentralTechCentral

    Subscribe to the newsletter

    Get the best South African technology news and analysis delivered to your e-mail inbox every morning.

    Facebook X (Twitter) YouTube LinkedIn
    WhatsApp Facebook X (Twitter) LinkedIn YouTube
    TechCentralTechCentral
    • News

      ‘System offline’ scourge to end, says Schreiber – but industry must pay

      23 June 2025

      Why the spectrum gold rush may soon be over

      23 June 2025

      Tech stability key to getting South Africa off damaging financial grey list

      23 June 2025

      Naspers shifts to an AI-first strategy – and it’s paying off

      23 June 2025

      Letter: South Africa risks missing AI wave while world surges ahead

      23 June 2025
    • World

      Watch | Starship rocket explodes in setback to Musk’s Mars mission

      19 June 2025

      Trump Mobile dials into politics, profit and patriarchy

      17 June 2025

      Samsung plots health data hub to link users and doctors in real time

      17 June 2025

      Beijing’s chip champions blacklisted by Taiwan

      16 June 2025

      China is behind in AI chips – but for how much longer?

      13 June 2025
    • In-depth

      Meta bets $72-billion on AI – and investors love it

      17 June 2025

      MultiChoice may unbundle SuperSport from DStv

      12 June 2025

      Grok promised bias-free chat. Then came the edits

      2 June 2025

      Digital fortress: We go inside JB5, Teraco’s giant new AI-ready data centre

      30 May 2025

      Sam Altman and Jony Ive’s big bet to out-Apple Apple

      22 May 2025
    • TCS

      TechCentral Nexus S0E3: Behind Takealot’s revenue surge

      23 June 2025

      TCS | South Africa’s Sociable wants to make social media social again

      23 June 2025

      TCS+ | AfriGIS’s Helen Hulett on how tech can help resolve South Africa’s water crisis

      18 June 2025

      TechCentral Nexus S0E2: South Africa’s digital battlefield

      16 June 2025

      TechCentral Nexus S0E1: Starlink, BEE and a new leader at Vodacom

      8 June 2025
    • Opinion

      South Africa pioneered drone laws a decade ago – now it must catch up

      17 June 2025

      AI and the future of ICT distribution

      16 June 2025

      Singapore soared – why can’t we? Lessons South Africa refuses to learn

      13 June 2025

      Beyond the box: why IT distribution depends on real partnerships

      2 June 2025

      South Africa’s next crisis? Being offline in an AI-driven world

      2 June 2025
    • Company Hubs
      • Africa Data Centres
      • AfriGIS
      • Altron Digital Business
      • Altron Document Solutions
      • Altron Group
      • Arctic Wolf
      • AvertITD
      • Braintree
      • CallMiner
      • CambriLearn
      • CYBER1 Solutions
      • Digicloud Africa
      • Digimune
      • Domains.co.za
      • ESET
      • Euphoria Telecom
      • Incredible Business
      • iONLINE
      • Iris Network Systems
      • LSD Open
      • NEC XON
      • Network Platforms
      • Next DLP
      • Ovations
      • Paracon
      • Paratus
      • Q-KON
      • SevenC
      • SkyWire
      • Solid8 Technologies
      • Telit Cinterion
      • Tenable
      • Vertiv
      • Videri Digital
      • Wipro
      • Workday
    • Sections
      • AI and machine learning
      • Banking
      • Broadcasting and Media
      • Cloud services
      • Contact centres and CX
      • Cryptocurrencies
      • Education and skills
      • Electronics and hardware
      • Energy and sustainability
      • Enterprise software
      • Fintech
      • Information security
      • Internet and connectivity
      • Internet of Things
      • Investment
      • IT services
      • Lifestyle
      • Motoring
      • Public sector
      • Retail and e-commerce
      • Science
      • SMEs and start-ups
      • Social media
      • Talent and leadership
      • Telecoms
    • Events
    • Advertise
    TechCentralTechCentral
    Home » AI and machine learning » How the AI behind ChatGPT actually works

    How the AI behind ChatGPT actually works

    The language models powering modern AI tools have a much longer history than most people realise.
    By The Conversation16 December 2024
    Twitter LinkedIn Facebook WhatsApp Email Telegram Copy Link
    News Alerts
    WhatsApp

    How the AI behind the likes of ChatGPT actually worksThe arrival of AI systems called large language models (LLMs), like OpenAI’s ChatGPT chatbot, has been heralded as the start of a new technological era. And they may indeed have significant impacts on how we live and work in future.

    But they haven’t appeared from nowhere and have a much longer history than most people realise. In fact, most of us have already been using the approaches they are based on for years in our existing technology.

    LLMs are a particular type of language model, which is a mathematical representation of language based on probabilities. If you’ve ever used predictive text on a mobile phone or asked a smart speaker a question, then you have almost certainly already used a language model. But what do they actually do and what does it take to make one?

    Language models are designed to estimate how likely it would be to see a particular sequence of words

    Language models are designed to estimate how likely it would be to see a particular sequence of words. This is where probabilities come in. For example, a good language model for English would assign a high probability to a well=formed sentence like “the old black cat slept soundly” and a low probability to a random sequence of words such as “library a or the quantum some”.

    Most language models can also reverse this process to generate plausible-looking text. The predictive text in your smartphone uses language models to anticipate how you might want to complete text as you are typing.

    The earliest method for creating language models was described in 1951 by Claude Shannon, a researcher working for IBM. His approach was based on sequences of words known as n-grams – say, “old black” or “cat slept soundly”. The probability of n-grams occurring within text was estimated by looking for examples in existing documents. These mathematical probabilities were then combined to calculate the overall probability of longer sequences of words, such as complete sentences.

    Neural networks

    Estimating probabilities for n-grams becomes much more difficult as the n-gram gets longer, so it is much harder to estimate accurate probabilities for 4-grams (sequences of four words) than for bi-grams (sequences of two words). Consequently, early language models of this type were often based on short n-grams.

    However, this meant that they often struggled to represent the connection between words that occurred far apart. This could result in the start and end of a sentence not matching up when the language model was used to generate a sentence.

    Read: iOS 18.2 update is rolling out, adding ChatGPT to iPhones

    To avoid this problem, researchers created language models based on neural networks – AI systems that are modelled on the way the human brain works. These language models are able to represent connections between words that may not be close together. Neural networks rely on large numbers of numerical values (known as parameters) to help understand these connections between words. These parameters must be set correctly for the model to work well.

    The neural network learns the appropriate values for these parameters by looking at large numbers of example documents, in a similar way that n-gram probabilities are learned by n-gram language models. During this “training” process, the neural network looks through the training documents and learns to predict the next word based on the ones that have come before.

    These models work well but have some disadvantages. Although in theory, the neural network is able to represent connections between words that occur far apart, in practice more importance is placed on those that are closer.

    More importantly, words in the training documents have to be processed in sequence to learn appropriate values for the network’s parameters. This limits how quickly the network can be trained.

    The dawn of transformers

    A new type of neural network, called a transformer, was introduced in 2017 and avoided these problems by processing all the words in the input at the same time. This allowed them to be trained in parallel, meaning that the calculations required can be spread across multiple computers to be carried out at the same time.

    A side effect of this change is that it allowed transformers to be trained on vastly more documents than was possible for previous approaches, producing larger language models.

    Transformers also learn from examples of text but can be trained to solve a wider range of problems than only predicting the next word. One is a kind of “fill in the blanks” problem where some words in the training text have been removed. The goal here is to guess which words are missing.

    The use of transformers has allowed the development of modern large language models

    Another problem is where the transformer is given a pair of sentences and asked to decide whether the second should follow the first. Training on problems like these has made transformers more flexible and powerful than previous language models.

    The use of transformers has allowed the development of modern large language models. They are in part referred to as large because they are trained using vastly more text examples than previous models.

    Some of these AI models are trained on over a trillion words. It would take an adult reading at average speed more than 7 600 years to read that much. These models are also based on very large neural networks, some with more than 100 billion parameters.

    In the last few years, an extra component has been added to large language models that allows users to interact with them using prompts. These prompts can be questions or instructions.

    Reinforcement learning

    This has enabled the development of generative AI systems such as ChatGPT, Google’s Gemini and Meta’s Llama. Models learn to respond to the prompts using a process called reinforcement learning, which is similar to the way computers are taught to play games like chess.

    Humans provide the language model with prompts, and the humans’ feedback on the replies produced by the AI model is used by the model’s learning algorithm to guide further output. Generating all these questions and rating the replies requires a lot of human input, which can be expensive to obtain.

    One way of reducing this cost is to create examples using a language model in order to simulate human-AI interaction. This AI-generated feedback is then used to train the system.

    Creating a large language model is still an expensive undertaking, though. The cost of training some recent models has been estimated to run into hundreds of millions of dollars. There is also an environmental cost, with the carbon dioxide emissions associated with creating LLMs estimated to be equivalent to multiple transatlantic flights.

    These are things that we will need to find solutions to amid an AI revolution that, for now, shows no sign of slowing down.The Conversation

    • The author, Mark Stevenson, is senior lecturer, University of Sheffield
    • This article is republished from The Conversation under a Creative Commons licence. Read the original article

    Get breaking news from TechCentral on WhatsApp. Sign up here

    Don’t miss:

    Google rolls out faster Gemini AI model to power agents



    ChatGPT OpenAI
    Subscribe to TechCentral Subscribe to TechCentral
    Share. Facebook Twitter LinkedIn WhatsApp Telegram Email Copy Link
    Previous ArticleThe US lost its lead in semiconductors. It may never regain it
    Next Article Broadcom joins the trillion-dollar club

    Related Posts

    Major rift opens between Microsoft and OpenAI

    17 June 2025

    Apple throws shade, not code, as it falls behind in AI

    10 June 2025

    How AI is rewriting the rules of software development

    4 June 2025
    Company News

    IoT connectivity management in South Africa – expert insights

    23 June 2025

    Let’s reimagine Joburg using the power of tech, data and AI

    23 June 2025

    Netstar doubles down on global markets while backing SA growth

    23 June 2025
    Opinion

    South Africa pioneered drone laws a decade ago – now it must catch up

    17 June 2025

    AI and the future of ICT distribution

    16 June 2025

    Singapore soared – why can’t we? Lessons South Africa refuses to learn

    13 June 2025

    Subscribe to Updates

    Get the best South African technology news and analysis delivered to your e-mail inbox every morning.

    © 2009 - 2025 NewsCentral Media

    Type above and press Enter to search. Press Esc to cancel.