Close Menu
TechCentralTechCentral

    Subscribe to the newsletter

    Get the best South African technology news and analysis delivered to your e-mail inbox every morning.

    Facebook X (Twitter) YouTube LinkedIn
    WhatsApp Facebook X (Twitter) LinkedIn YouTube
    TechCentralTechCentral
    • News

      Blue Label Telecoms to change its name as restructuring gathers pace

      11 July 2025

      Get your ID delivered like pizza – home affairs’ latest digital shake-up

      11 July 2025

      EFF vows to stop Starlink from launching in South Africa

      11 July 2025

      Apple plans product blitz to reignite growth

      11 July 2025

      Nissan doubles down on South Africa despite plant uncertainty

      11 July 2025
    • World

      Grok 4 arrives with bold claims and fresh controversy

      10 July 2025

      Bitcoin pushes higher into record territory

      10 July 2025

      Cupertino vs Brussels: Apple challenges Big Tech crackdown

      7 July 2025

      Grammarly acquires e-mail start-up Superhuman

      1 July 2025

      Apple considers ditching its own AI in Siri overhaul

      1 July 2025
    • In-depth

      Siemens is battling Big Tech for AI supremacy in factories

      24 June 2025

      The algorithm will sing now: why musicians should be worried about AI

      20 June 2025

      Meta bets $72-billion on AI – and investors love it

      17 June 2025

      MultiChoice may unbundle SuperSport from DStv

      12 June 2025

      Grok promised bias-free chat. Then came the edits

      2 June 2025
    • TCS

      TCS+ | MVNX on the opportunities in South Africa’s booming MVNO market

      11 July 2025

      TCS | Connecting Saffas – Renier Lombard on The Lekker Network

      7 July 2025

      TechCentral Nexus S0E4: Takealot’s big Post Office jobs plan

      4 July 2025

      TCS | Tech, townships and tenacity: Spar’s plan to win with Spar2U

      3 July 2025

      TCS+ | First Distribution on the latest and greatest cloud technologies

      27 June 2025
    • Opinion

      In defence of equity alternatives for BEE

      30 June 2025

      E-commerce in ICT distribution: enabler or disruptor?

      30 June 2025

      South Africa pioneered drone laws a decade ago – now it must catch up

      17 June 2025

      AI and the future of ICT distribution

      16 June 2025

      Singapore soared – why can’t we? Lessons South Africa refuses to learn

      13 June 2025
    • Company Hubs
      • Africa Data Centres
      • AfriGIS
      • Altron Digital Business
      • Altron Document Solutions
      • Altron Group
      • Arctic Wolf
      • AvertITD
      • Braintree
      • CallMiner
      • CambriLearn
      • CYBER1 Solutions
      • Digicloud Africa
      • Digimune
      • Domains.co.za
      • ESET
      • Euphoria Telecom
      • Incredible Business
      • iONLINE
      • Iris Network Systems
      • LSD Open
      • NEC XON
      • Network Platforms
      • Next DLP
      • Ovations
      • Paracon
      • Paratus
      • Q-KON
      • SevenC
      • SkyWire
      • Solid8 Technologies
      • Telit Cinterion
      • Tenable
      • Vertiv
      • Videri Digital
      • Wipro
      • Workday
    • Sections
      • AI and machine learning
      • Banking
      • Broadcasting and Media
      • Cloud services
      • Contact centres and CX
      • Cryptocurrencies
      • Education and skills
      • Electronics and hardware
      • Energy and sustainability
      • Enterprise software
      • Fintech
      • Information security
      • Internet and connectivity
      • Internet of Things
      • Investment
      • IT services
      • Lifestyle
      • Motoring
      • Public sector
      • Retail and e-commerce
      • Science
      • SMEs and start-ups
      • Social media
      • Talent and leadership
      • Telecoms
    • Events
    • Advertise
    TechCentralTechCentral
    Home » In-depth » Nanomachines that could change the world

    Nanomachines that could change the world

    By The Conversation25 April 2016
    Twitter LinkedIn Facebook WhatsApp Email Telegram Copy Link
    News Alerts
    WhatsApp

    nanotech-640

    A group of physicists recently built the smallest engine ever created from just a single atom. Like any other engine, it converts heat energy into movement — but it does so on a smaller scale than seen before. The atom is trapped in a cone of electromagnetic energy and lasers are used to heat it up and cool it down, which causes the atom to move back and forth in the cone like an engine piston.

    The scientists from the University of Mainz in Germany who are behind the invention don’t have a particular use in mind for the engine. But it’s a good illustration of how we are increasingly able to replicate the everyday machines we rely on at a tiny scale. This is opening the way for some exciting possibilities in the future, particularly in the use of nanorobots in medicine that could be sent into the body to release targeted drugs or even fight diseases such as cancer.

    Nanotechnology deals with ultra-small objects equivalent to a billionth of a metre in size, which sounds an impossibly tiny scale at which to build machines. But size is relative to how close you are to an object. We can’t see things at the nanoscale with the naked eye, just as we can’t see the outer planets of the solar system. Yet if we zoom in — with a telescope for the planets or a powerful electron microscope for nano-objects — then we change the frame of reference and things look very different.

    However, even after getting a closer look, we still can’t build machines at the nanoscale using conventional engineering tools. While regular machines, such as the internal combustion engines in most cars, operate according to the rules of physics laid out by Isaac Newton, things at the nanoscale follow the more complex laws of quantum mechanics. So we need different tools that take into account the quantum world in order to manipulate atoms and molecules in a way that uses them as building blocks for nanomachines. Here are four more tiny machines that could have a big impact.

    Graphene engine for nanorobots

    Graphene bulge American Chemical Society
    Graphene bulge American Chemical Society

    Researchers from Singapore have recently demonstrated a simple but nano-sized engine made from a highly elastic piece of graphene. Graphene is a two-dimensional sheet of carbon atoms that has exceptional mechanical strength. Inserting some chlorine and fluorine molecules into the graphene lattice and firing a laser at it causes the sheet to expand. Rapidly turning the laser on and off makes the graphene pump back and forth like the piston in an internal combustion engine.

    The researchers think the graphene nano-engine could be used to power tiny robots, for example to attack cancer cells in the body. Or it could be used in a so-called “lab-on-a-chip” — a device that shrinks the functions of a chemistry lab into tiny package that can be used for rapid blood tests, among other things.

    Frictionless nano-rotor

    Molecular motor Palma, C-A; Kühne, D; Klappenberger, F; Barth, JV - Technische Universität München
    Molecular motor Palma, C-A; Kühne, D; Klappenberger, F; Barth, JV – Technische Universität München

    The rotors that produce movement in machines such as aircraft engines and fans all usually suffer from friction, which limits their performance. Nanotechnology can be used to create a motor from a single molecule, which can rotate without any friction. Normal rotors interact with the air according to Newton’s laws as they spin round and so experience friction. But, at the nanoscale, molecular rotors follow quantum law, meaning they don’t interact with the air in the same way and so friction doesn’t affect their performance.

    Nature has actually already shown us that molecular motors are possible. Certain proteins can travel along a surface using a rotating mechanism that create movement from chemical energy. These motor proteins are what cause cells to contract and so are responsible for our muscle movements.

    Researchers from Germany recently reported creating a molecular rotor by placing moving molecules inside a tiny hexagonal hole known as a nanopore in a thin piece of silver. The position and movement of the molecules meant they began to rotate around the hole like a rotor. Again, this form of nano-engine could be used to power a tiny robot around the body.

    Controllable nano-rockets

    A rocket is the fastest man-made vehicle that can freely travel across the universe. Several groups of researchers have recently constructed a high-speed, remote-controlled nanoscale version of a rocket by combining nanoparticles with biological molecules.

    In one case, the body of the rocket was made from a polystyrene bead covered in gold and chromium. This was attached to multiple “catalytic engine” molecules using strands of DNA. When placed in a solution of hydrogen peroxide, the engine molecules caused a chemical reaction that produced oxygen bubbles, forcing the rocket to move in the opposite direction. Shining a beam of ultraviolet light on one side of the rocket causes the DNA to break apart, detaching the engines and changing the rocket’s direction of travel. The researchers hope to develop the rocket so it can be used in any environment, for example to deliver drugs to a target area of the body.

    Magnetic nano-vehicles for carrying drugs

    Magnetic nanoparticles Tapas Sen
    Magnetic nanoparticles Tapas Sen

    My own research group is among those working on a simpler way to carry drugs through the body that is already being explored with magnetic nanoparticles. Drugs are injected into a magnetic shell structure that can expand in the presence of heat or light. This means that, once inserted into the body, they can be guided to the target area using magnets and then activated to expand and release their drug.

    The technology is also being studied for medical imaging. Creating the nanoparticles to gather in certain tissues and then scanning the body with a magnetic resonance imaging (MRI) could help highlight problems such as diabetes.The Conversation

    • Tapas Sen is reader in nanomaterials chemistry, University of Central Lancashire
    • This article was originally published on The Conversation


    Subscribe to TechCentral Subscribe to TechCentral
    Share. Facebook Twitter LinkedIn WhatsApp Telegram Email Copy Link
    Previous ArticleMalema utterances treasonable: ANC
    Next Article Why PCCW is backing Africa-1 cable

    Related Posts

    Blue Label Telecoms to change its name as restructuring gathers pace

    11 July 2025

    Get your ID delivered like pizza – home affairs’ latest digital shake-up

    11 July 2025

    TCS+ | MVNX on the opportunities in South Africa’s booming MVNO market

    11 July 2025
    Company News

    $125-trillion traded: Binance redefines global finance in just eight years

    11 July 2025

    NEC XON welcomes HPE acquisition of Juniper Networks

    11 July 2025

    LTE Cat 1 vs Cat 1 bis – what’s the difference?

    11 July 2025
    Opinion

    In defence of equity alternatives for BEE

    30 June 2025

    E-commerce in ICT distribution: enabler or disruptor?

    30 June 2025

    South Africa pioneered drone laws a decade ago – now it must catch up

    17 June 2025

    Subscribe to Updates

    Get the best South African technology news and analysis delivered to your e-mail inbox every morning.

    © 2009 - 2025 NewsCentral Media

    Type above and press Enter to search. Press Esc to cancel.